

Projekt: Außenanlagen REWE-Markt und Aldi-Markt Falkenthaler Chaussee in Zehdenick

Kurzkonzept zur Planung der Entwässerungsanlagen

Objekt:	Zehdenick Entwässerung	
Bauherr:	REWE Markt GmbH Rheinstraße 8 14513 Teltow	
	Teltow, den	Unterschrift
Entwurfsverfasser:	cproject ingenieure gmbh Schönherrstraße 8 09113 Chemnitz	
	Chemnitz, den 15.03.2024	A. Krawse Unterschrift

Konzept Außenanlagen REWE-Markt und Aldi-Markt Falkenthaler Chaussee in Zehdenick

INHALTSVERZEICHNIS

1	AL	LGEMEINE ANGABEN	3
1.1	Träg	ger der Maßnahme	3
1.2		enstand der Planung und Veranlassung der Bearbeitung	
1.3	Star	ndortangaben	3
2	ÖR	TLICHE VERHÄLTNISSE UND PLANUNGSVORGABEN	4
2.1	Vor	nandenes Gebiet und Befestigungen	4
2.2	Vor	nandene Zu- und Ausfahrten	4
2.3		grundverhältnisse	
		Allgemeines	
	2.3.2	Grundwasser	5
	2.3.3	Aussagen zur Versickerungsfähigkeit	5
3	En	TWÄSSERUNGSANLAGEN	6
3.1	Gep	lante Zu- und Ausfahrten	6
3.2		rologische Daten	
3.3	Aus	gangswerte für die Bemessung	6
3.4	Gev	rählte Lösung	7
	3.4.1		
	3.4.2	Vorgesehene Entwässerungsanlage	8
	3.4.3	Überflutungsnachweis	9
3.5	Kan	aldimensionierung	10
3.6	Maß	nahmen zur Niederschlagswasserbehandlung nach DWA-A 102	11
	3.6.1	Flächenermittlung	11
	3.6.2	Bilanzierung Stoffabtrag	11
Tal	BELLE	NVERZEICHNIS	
		Flächeneinteilung zur Abflussermittlung Zuordnung Belastungskategorie nach DWA-A102	
Αn	LAGEN	IVERZEICHNIS	
Anla	age 1	KOSTRA-DWD-2020: Zehdenick	12
	age 2.1	Flächenermittlung versiegelte Flächen für RRR	
	age 2.2		17

Konzept
Außenanlagen REWE-Markt und Aldi-Markt Falkenthaler Chaussee in Zehdenick

1 ALLGEMEINE ANGABEN

1.1 Träger der Maßnahme

REWE

REWE Markt GmbH

vertreten durch: Zweigniederlassung Ost

Bauwesen Rheinstraße 8

14513 TELTOW

1.2 Gegenstand der Planung und Veranlassung der Bearbeitung

Der Bauherr plant die Erweiterung und Erneuerung des bestehenden Supermarktes in Zehdenick.

Die cproject ingenieure gmbh wurde mit der Planung zur Neugestaltung der Außenanlagen einschließlich der erforderlichen Entwässerung für die Gesamtfläche der REWE- und Aldi-Filiale an der Falkenthaler Chaussee beauftragt.

Neben den Außenanlagen werden die Unterirdische Wirtschaft und der Anschluss an das öffentliche Netz (Planungsgrenze Grundstücksgrenze) betrachtet.

1.3 Standortangaben

Bundesland: Brandenburg

Landkreis: Oberhavel

Ort: Zehdenick, Falkenthaler Chaussee

Flurstücke: Flurstück 105/1; 193

Gemarkung: Zehdenick

Das Baugrundstück umfasst das Flurstück 105/1 mit einer Gesamtgröße von ca. 1,23 ha und einen Teil des Flurstückes 193 mit einer Größe von 0,15 ha.

Stand: 15.03.2024 Seite 3 von 11

2 ÖRTLICHE VERHÄLTNISSE UND PLANUNGSVORGABEN


2.1 Vorhandenes Gebiet und Befestigungen

Das Grundstück des REWE-Marktes liegt am süd-westlichen Ortseingang von Zehdenick. Östlich wird das Grundstück von der Bundesstraße 109 – Falkenthaler Chaussee begrenzt. Südlich und westlich schließen sich landwirtschaftliche Nutzflächen an und nördlich befindet sich ein Autohaus.

Auf dem Flurstück befinden sich die Bestandsmärkte REWE und Aldi sowie bereits vorhandene Stellplätze und Fahrgassen, die mit Betonpflaster befestigt sind.

2.2 Vorhandene Zu- und Ausfahrten

Von Norden und Süden ist das Grundstück über zwei Aus- und Einfahrten von der Falkenthaler Chaussee zu erreichen.

2.3 Baugrundverhältnisse

2.3.1 Allgemeines

Vom BFM Baugrundinstitut Franke-Meißner Berlin-Brandenburg GmbH wurden Baugrunderkundungen durchgeführt, um geologische und hydrogeologische Aussagen zu gewinnen.

Stand: 15.03.2024 Seite **4** von **11**

Konzept

Außenanlagen REWE-Markt und Aldi-Markt Falkenthaler Chaussee in Zehdenick

Das Untersuchungsgebiet besteht dem Grunde nach aus 3 Schichten:

 Auffüllungen - Sande in veränderlichen Mengenanteilen, tlw. Ziegel- Beton- und/oder Kunststoffreste (bis 0,5 m unter GOK)

über

Sanden (nur östlicher Bereich) - Feinsand, mittelsandig, schwach schluffig, schwach kiesig (Schichtdicke 0,2 bis 1,1 m)

über

 Geschiebelehm / Geschiebemergel -Feinsand, mittelsandig, schluffig, schwach tonig, schwach grobsandig, tlw. schwach kiesig. (UK > 7,0 m u. GOK)

2.3.2 Grundwasser

Grundwasser wurde in den Bohrungen nicht angetroffen. Entspr. Den Hydrogeologischen Karten des LBGR steht Grundwasser unterhalb der Grundmoränenablagerungen bei ca. 5 m u. GOK an.

2.3.3 Aussagen zur Versickerungsfähigkeit

Auf dem Grundstück stehen oberflächennah Auffüllungen bis im Mittel 0,8 m u. GOK an. Sofern eine Versickerung von nicht schädlich verunreinigtem Niederschlagswasser geplant ist, sind die Auffüllungen im Bereich des Sickerweges grundsätzlich auszutauschen.

Die im östlichen Grundstücksbereich unterhalb der Auffüllungen anstehenden Fein- und Mittelsande mit schluffigen Beimengungen weisen nach den Ergebnissen der bodenmechanischen Analysen einen korrelierten Durchlässigkeitsbeiwert k_f von etwa $4,0\cdot 10^{-5}$ m/s auf und sind nach DIN 18130-1 als "durchlässig" zu bezeichnen.

Bei den festgestellten hydrogeologischen Verhältnissen wäre eine Versickerung von nicht schädlich verunreinigten Niederschlagswässern durch schadstofffreie Böden zumindest über eine Muldenversickerung an dieser Stelle grundsätzlich möglich. Allerdings sind die Bereiche, in denen oberflächennah Böden mit geringerer Durchlässigkeit erkundet wurden (Bodenart: ST*-TL), in der Planung von Versickerungsvorrichtungen auszusparen. Diese Böden weisen gemäß den bodenmechanischen Untersuchungen korrelative Durchlässigkeiten k_i von $4,9 \cdot 10^{-8}$ bis $1,3 \cdot 10^{-7}$ m/s ("schwach durchlässig" nach DIN 18130-1) und **sind für eine Versickerung von Niederschlagswasser nicht geeignet**.

Stand: 15.03.2024 Seite **5** von **11**

3 ENTWÄSSERUNGSANLAGEN

3.1 Geplante Zu- und Ausfahrten

Grundsätzlich ist eine Versickerung bzw. Verbringung des anfallenden Regenwassers innerhalb des Grundstückes vor einer Einleitung in die Vorflut vorzuziehen.

Eine Versickerung bzw. eine Nutzung des Regenwassers ist bei geplanten Bauvorhaben zwar angedacht, jedoch nicht in dem Maße, weshalb die gedrosselte Ableitung und ein zwischenzeitlicher Rückhalt des anfallenden Niederschlagswassers vorgenommen werden muss.

Die Bemessung der Entwässerung erfolgt nach DIN 1986-100 in Verbindung mit DWA-A 117 und DWA-A 118.

Maßgebend für die Planung der Regenentwässerung ist eine gedrosselte Ableitung von 17 l/s.

3.2 Hydrologische Daten

Aus KOSTRA -DWD 2020, Version 4.1 sind für Zehdenick (Spalte 188, Zeile 95) (Anlage 1) die Regenspenden ausgewiesen.

Dauerstufe [min]		Niederschlagsspenden [l/(s*ha)]								
	1	2	3	5	10	20	30	50	100	
5	236,7	300	340	390	463,3	540	586,7	653,3	746,7	
10	148,3	188,3	213,3	245	291,7	338,3	370	410	468,3	
15	112,2	141,1	160	183,3	217,8	254,4	277,8	307,8	352,2	
20	90,8	115	129,2	149,2	177,5	205,8	225	250	285,8	
30	67,2	85	96,1	110,6	131,1	152,8	166,7	185	211,7	
45	49,6	62,6	70,7	81,5	97	112,6	123	136,7	156,3	
60	40	50,6	56,9	65,6	78,1	90,8	99,2	110	125,6	
90	29,4	37	41,9	48,1	57,2	66,7	72,8	80,9	92,4	
120	23,6	29,9	33,6	38,8	46	53,5	58,5	64,9	74,2	
180	17,3	21,9	24,6	28,4	33,7	39,3	42,9	47,6	54,4	
240	13,9	17,5	19,8	22,8	27,1	31,5	34,4	38,2	43,6	
360	10,1	12,8	14,5	16,7	19,8	23,1	25,2	28	31,9	

3.3 Ausgangswerte für die Bemessung

Für das Betrachtungsgebiet wird eine Entwässerungslösung für den Gebäudebereich (Dachflächen) und den Außenanlagenbereich zusammen entwickelt.

Für die Berechnung des Oberflächenwasseranfalls ist die Formel (5) nach DIN 1986-100 zu verwenden. Für die Dimensionierung der Kanäle wird bei der Ermittlung der undurchlässigen Fläche der **Spitzenabflussbeiwert C** $_{\text{S}}$ verwendet. Für die Berechnung von Rückhalteräumen ist der **mittlere Abflussbeiwert C** $_{\text{m}}$ anzusetzen.

Die für die Bemessung **maßgebende Niederschlagsdauer** ist mit **D = 5 min** angegeben. Hinsichtlich der Jährlichkeit des Berechnungsregens sind für Dachflächen Regenereignisse von mind. einmal in 5 Jahren und für Grundstücksflächen von mind. einmal in 2 Jahren definiert.

Stand: 15.03.2024 Seite 6 von 11

Konzept

Außenanlagen REWE-Markt und Aldi-Markt Falkenthaler Chaussee in Zehdenick

Basierend auf der DWA-A 117 wird bei der Bemessung Rückhalteanlagen eine *Häufigkeit n 0,2 pro a* berücksichtigt, d.h. ebenfalls ein Wiederkehrintervall von 1-mal in 5 Jahren. Die Berechnung von Rückhalteräumen erfolgt nach DWA-A 117, mit dem *einfachen Bemessungsverfahren*, da:

- das Einzugsgebiet < 200 ha
- die gewählte Überschreitungshäufigkeit T_n ≤ 10 Jahre
- die spezifische Versickerungsrate > 2 l/(s*ha)

ist.

Für die Bemessung nach DWA-A 117, werden der **Zuschlagfaktor** f_z = 1,15 und **Abminderungs-** faktor f_A = 1,0 gesetzt.

Bei der Berechnung der undurchlässigen Flächen werden weiterhin die mittleren Abflussbeiwerte (C_m) für die Ermittlung des Speichervolumens und die Spitzenabflussbeiwerte (C_s) für die Kanaldimensionierung des Regenwasserkanals nach Tabelle 9 der DIN 1986-100, angesetzt.

3.4 Gewählte Lösung

3.4.1 Gliederung des Einzugsgebietes und Flächenermittlung

Das Einzugsgebiet setzt sich aus Dachflächen und Grundstücksflächen zusammen. Die Grundstückflächen können dabei weiterhin in Pflasterflächen und Schotterflächen unterteilt werden.

Es ergeben sich folgende Flächen:

Tabelle 1: Ermittlung versiewgelte Fläche für RRR

Einzugsfläche		eigenschaften		
	Art der Befestigung	Abfluss-bei- wert	Fläche [m²]	Au [m²]
Dachfläche Aldi	Flachdach: Metall, Glas, Faserzement	0,90	1666,70	1500,03
Dachfläche REWE	Flachdach: Metall, Glas, Faserzement	0,90	3227,00	2904,30
Dachfläche Trafo	Flachdach: Metall, Glas, Faserzement	0,90	10,00	9,00
Anlieferungsrampe	Rampen: Neigung zum Gebäude	1,00	335,90	335,90
Fahrgassen	Verkehrsflächen: Be- tonsteinpflaster	0,70	2878,80	2015,16
Gehweg	Verkehrsflächen: Be- tonsteinpflaster	0,70	456,00	319,20
Stellplätze	Verkehrsflächen: Pflaster mit Fugenan- teil > 15%	0,60	1779,00	1067,40
Schotterflächen	Kiesbelag: wasserge- bundene Flächen	0,70	135,30	94,71
EKW-Box	Verkehrsflächen: Be- tonsteinpflaster	0,70	16,00	11,20
Grünfläche	Rasen: flaches Ge- lände	0,10	961,90	96,19
Gesamt		0,73	11466,60	8353,09

Stand: 15.03.2024 Seite **7** von **11**

Vorerst erfolgt nur eine überschlägige Berechnung des Regenrückhaltevolumen. Dafür sind nur die Gesamtflächen der jeweiligen Befestigung erforderlich.

Im Rahmen der weiteren Planung wird dann zur Ermittlung und Bemessung der Entwässerungsanlagen das Vorhabengebiet in Dachflächen und in Flächen der Außenanlagen (Wege, Fahrgassen, Stellflächen) unterteilt.

Analog wird mit den Außenflächen verfahren. Es werden sämtliche befestigte Flächen der Außenanlagen bei der Berechnung berücksichtigt.

Die Grünflächen werden als nicht abflusswirksam angesehen und gehen daher in die Versickerungsberechnung nicht ein.

3.4.2 Vorgesehene Entwässerungsanlage

Für das Betrachtungsgebiet wird eine Entwässerungslösung für den Gebäudebereich (Dachflächen) und den Außenanlagenbereich zusammen entwickelt. Es handelt sich daher um dezentrale Rückhaltung.

Das anfallende Niederschlagswasser der Dachfläche der beiden Einkaufsmärkte wird gefasst und zu den östlichen Verkehrs- und Stellflächen abgeleitet. Dort ist zur Fassung und Zwischenspeicherung im Bereich der Grüninseln die Errichtung von Kiesrigolen mit Drosselabfluss zum Bestandskanal vorgesehen.

Das Rückhaltevolumen soll durch offene Erdmulden innerhalb der Grüninseln erweitert werden. Hier lässt sich nach erstem Überblick der Höhensituation durch leichte Erdbewegungen von max. 50 cm ein Rückhaltvolumen erzeugen.

Damit ein breitflächiger Abfluss aus den Verkehrs- und Stellflächen in das angrenzende Gelände bzw. die Mulde gewährleistet wird, ist die Fläche mit der entsprechenden Querneigung zu errichten. Randeinfassungen sind möglichst bündig mit der Oberfläche herzustellen. Konzentrierte Ableitungen über Pflastermulden bzw. in der Oberfläche ausgebildete Mulden sind zu vermeiden.

Sollten Hochborde zur Einfassung erforderlich werden, um z. B. das Befahren von Pflanzflächen zu unterbinden, sind diese durch mind. 10 cm breite Lücken zwischen den einzelnen Steinen zu unterbrechen.

Ein Anschluss an das öffentliche Regenwasserkanalsystem in der Falkenthaler Chaussee besteht derzeit nicht. Die Stadtwerke Zehdenick stimmen einer gedrosselten Ableitung von 17 l/s (DN 150, 1%) bei vorliegender wasserrechtlicher Erlaubnis der unteren Wasserbehörde zu.

Die vorhandenen Altkanäle rund um die Gebäude und Parkflächen befinden sich in einem desolaten Zustand und werden einschließlich der vorhandenen Straßenabläufe und Schachtbauwerke ausgebaut und auf der gesamten Fläche neu hergestellt. Ebenfalls werden die Regenfallrohre des Daches mit angeschlossen.

Stand: 15.03.2024 Seite 8 von 11

Konzept

Außenanlagen REWE-Markt und Aldi-Markt Falkenthaler Chaussee in Zehdenick

Die Berechnung des erforderlichen Rückhaltevolumens erfolgt mit dem einfachen Verfahren nach DWA-A 117 unter Vorgabe folgender Berechnungsgrundlagen:

- Gewählte Überschreitungshäufigkeit T ≤ 5 Jahre
- Mittlerer Abflussbeiwert der Dächer 1,0
- Drosselabfluss 17 l/s
- Zuschlagfaktor f_z = 1,15
- Abminderungsfaktor f_A = 1,0

Die Bestimmung des Rückhaltevolumens erfolgt iterativ für jede Dauerstufe nach den Formeln (6) und (7) DWA-A 117.

Rigolenelement mit Berechnung des Rückhalteraumes nach DWA-A 117

Au =	8353,09	m²
br =	20,00	m
hR =	1,00	m
fz =	1,15	
fA =	1,0	
kf =	0,000000049	m/s
QDr =	17	l/s
Füllung:	Kies	
sR =	0,35	

Ermittlung Gesamtspeicherkoeffizient srr = 0,35

Dauerstufe	Regenspende	erf. Länge der Rigole	erf. Speicher- volumen	
	r0,01			
[min]	[l/s*ha]	[m]	[m³]	
5	463,30	18,23	127,59	
10	291,70	22,32	156,27	
15	217,80	24,36	170,52	
20	177,50	25,84	180,90	
30	131,10	27,30	191,12	
45	97,00	28,32	198,24	
60	78,10	28,42	198,96	
90	57,20	27,15	190,03	
120	46,00	25,13	175,92	
180	33,70	19,47	136,31	
240	27,10	12,93	90,50	
Entleerungszeit				
tE=	3,22	h		

Aus der Berechnung ergibt sich ein Rückhaltvolumen von 199 m³.

3.4.3 Überflutungsnachweis

Nach DIN 1986-100 sind hierbei 3 Fälle zu betrachten:

Stand: 15.03.2024 Seite **9** von **11**

Konzept

Außenanlagen REWE-Markt und Aldi-Markt Falkenthaler Chaussee in Zehdenick

- Nach Formel (20) als Differenz zwischen dem 30-jährigen und dem 2-jährigen Regenereignis
- Nach Formel (21) sofern die Kanalbemessung nach dem 2-jährigen Regenereignis vorgenommen wurde
- Nach Formel (22) bei Einleitbeschränkungen

Die Prüfung nach Formel (21) kann entfallen, da für die Bemessung der Kanalrohre für das 5jährige Regenereignis durchgeführt werden soll. Dies geschieht mit Fortschreibung der Planung.

Für die Prüfung nach Formel (20) wird als maßgebende Dauerstufe D = 10 min nach Tabelle 4, DWA-A 118 festgelegt.

Überflutungsnachweis DIN 1986-100

Als Differenz zw. dem 30-jährigen und 2-jährigen Regenereignis (Formel 20)

aus Berechnung des Rückhalteraumes $V_{RR} =$ 199,02 m³

Au =9733,59 m² 11466,60 m² Agesamt=

10

Dauerstufe Regenspende Regenspende erf. Volumen r0,03 r0,5 [l/s*ha] [l/s*ha] [min] $[m^3]$ 370,00

188,30

Formel 21 findet keine Anwendung, da die Bemessung der Grundleitungen mit dem 5-jährigen Regenereignis erfolgte.

144,59

Bei Einleitungsbeschränkung (Formel 22)

Entspricht der Berechnung des erforderlichen Rückhaltevolumens für das 5-jährige Regenereig-

Fazit: Das sich aus den Berechnungen für den Überflutungsnachweis und für die Einleitbeschränkung ergebende größere Volumen ist maßgebend. Somit beträgt das erforderliche Rückhaltevolumen 199 m³.

3.5 Kanaldimensionierung

Die Kanaldimensionierung erfolgt gemäß DIN 1986-100 mit dem 5-jährigen Regenereignis und unter Ansatz der Spitzenabflussbeiwerte Cs. Für Grundstücksentwässerungsanlage gilt gemäß DIN 1986-100 die Anforderung, dass der Füllgrad t/h_D ≤ 0,7 beträgt und die Mindestfließgeschwindigkeit von 0,7 m/s nicht unterschritten wird. Dies ist bei der Dimensionierung zu berücksichtigen. Die Kanaldimensionierung erfolgt in der Fortschreibung der Entwurfsplanung.

> Stand: 15.03.2024 Seite **10** von **11**

3.6 Maßnahmen zur Niederschlagswasserbehandlung nach DWA-A 102

3.6.1 Flächenermittlung

Für die Kanaldimensionierung wurden die angeschlossenen, befestigten Flächen bereits im Vorfeld ermittelt. Zur Bewertung wird die kanalisierte Einzugsfläche ohne Berücksichtigung des Abminderungsfaktor f_d nach Tabelle C.1 DWA-A 102 und ohne Grünflächen aus Anlage 2.1 angesetzt, da die maßgebenden Flächen bereits mit dem Spitzenabflussbeiwert ermittelt wurden.

Basierend auf der Anzahl der Regenwasserkanalstränge, können mehrere Sedimentationsanlagen erforderlich werden. Demzufolge sind für die Bemessung der Sedimentationsanlagen Einzugsgebiete zu bilden, für die jeweils eine Bilanzierung erfolgen muss.

Die Hauptflächen werden in folgende Flächengruppen und Belastungskategorien eingeteilt:

Tabelle 2: Zuordnung Belastungskategorie nach DWA-A102

Flächenart	Flächengruppe	Belastungskategorie
Dächer	D	I
Betonpflasterflächen	V2	II
Schotterrasen + Rasengitterplatten	V2	II

3.6.2 Bilanzierung Stoffabtrag

Aus der Zuordnung der Belastungskategorie kann mithilfe der Tabelle 4 des DWA-Arbeitsblattes A 102 der spezifische Stoffabtrag $b_{R,a,AFS63}$ bezogen auf die jeweiligen Flächengrößen ermittelt werden Anlage 2.2. $b_{R,a,AFS63}$ = 511,60 kg/(ha*a).

Für Flächen der Belastungskategorie I wird keine Behandlung erforderlich.

Der zulässige flächenspezifische Stoffaustag AFS63 beträgt 280,0 kg/(ha*a).

Daraus ergibt sich eine Erforderlichkeit zur Niederschlagswasserbehandlung, diese erfolgt mit der Fortschreibung der Entwurfsplanung.

Verfasst: Chemnitz, 15.03.2024

i.A. Dipl.-Ing. (FH) Annette Krause

Projektingenieur

A. Krause

Stand: 15.03.2024 Seite **11** von **11**

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagshöhen nach **KOSTRA-DWD 2020**

: Spalte 188, Zeile 95 : Zehdenick (BB) Rasterfeld INDEX_RC : 095188

Ortsname

Bemerkung

Dauerstufe D			Niede	rschlagshöhen	hN [mm] je Wie	ederkehrinterva	II T [a]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	7,1	9,0	10,2	11,7	13,9	16,2	17,6	19,6	22,4
10 min	8,9	11,3	12,8	14,7	17,5	20,3	22,2	24,6	28,1
15 min	10,1	12,7	14,4	16,5	19,6	22,9	25,0	27,7	31,7
20 min	10,9	13,8	15,5	17,9	21,3	24,7	27,0	30,0	34,3
30 min	12,1	15,3	17,3	19,9	23,6	27,5	30,0	33,3	38,1
45 min	13,4	16,9	19,1	22,0	26,2	30,4	33,2	36,9	42,2
60 min	14,4	18,2	20,5	23,6	28,1	32,7	35,7	39,6	45,2
90 min	15,9	20,0	22,6	26,0	30,9	36,0	39,3	43,7	49,9
2 h	17,0	21,5	24,2	27,9	33,1	38,5	42,1	46,7	53,4
3 h	18,7	23,6	26,6	30,7	36,4	42,4	46,3	51,4	58,7
4 h	20,0	25,2	28,5	32,8	39,0	45,3	49,5	55,0	62,8
6 h	21,9	27,7	31,3	36,0	42,8	49,8	54,4	60,4	69,0
9 h	24,1	30,4	34,4	39,6	47,0	54,7	59,7	66,3	75,8
12 h	25,7	32,5	36,7	42,3	50,2	58,4	63,8	70,9	81,0
18 h	28,3	35,7	40,3	46,4	55,1	64,2	70,1	77,8	88,9
24 h	30,2	38,2	43,1	49,6	58,9	68,6	74,9	83,1	95,0
48 h	35,4	44,7	50,5	58,1	69,1	80,4	87,8	97,5	111,4
72 h	38,8	49,1	55,5	63,8	75,8	88,2	96,3	107,0	122,2
4 d	41,5	52,5	59,2	68,2	81,0	94,2	102,9	114,3	130,5
5 d	43,7	55,2	62,4	71,7	85,2	99,2	108,3	120,3	137,4
6 d	45,5	57,6	65,0	74,8	88,9	103,4	112,9	125,4	143,3
7 d	47,2	59,6	67,4	77,5	92,1	107,1	117,0	129,9	148,4

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

Niederschlagshöhe in [mm] hN

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagsspenden nach **KOSTRA-DWD 2020**

: Spalte 188, Zeile 95 : Zehdenick (BB) INDEX_RC Rasterfeld : 095188

Ortsname

Bemerkung

Dauerstufe D	Niederschlagspenden rN [l/(s·ha)] je Wiederkehrintervall T [a]								
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	236,7	300,0	340,0	390,0	463,3	540,0	586,7	653,3	746,7
10 min	148,3	188,3	213,3	245,0	291,7	338,3	370,0	410,0	468,3
15 min	112,2	141,1	160,0	183,3	217,8	254,4	277,8	307,8	352,2
20 min	90,8	115,0	129,2	149,2	177,5	205,8	225,0	250,0	285,8
30 min	67,2	85,0	96,1	110,6	131,1	152,8	166,7	185,0	211,7
45 min	49,6	62,6	70,7	81,5	97,0	112,6	123,0	136,7	156,3
60 min	40,0	50,6	56,9	65,6	78,1	90,8	99,2	110,0	125,6
90 min	29,4	37,0	41,9	48,1	57,2	66,7	72,8	80,9	92,4
2 h	23,6	29,9	33,6	38,8	46,0	53,5	58,5	64,9	74,2
3 h	17,3	21,9	24,6	28,4	33,7	39,3	42,9	47,6	54,4
4 h	13,9	17,5	19,8	22,8	27,1	31,5	34,4	38,2	43,6
6 h	10,1	12,8	14,5	16,7	19,8	23,1	25,2	28,0	31,9
9 h	7,4	9,4	10,6	12,2	14,5	16,9	18,4	20,5	23,4
12 h	5,9	7,5	8,5	9,8	11,6	13,5	14,8	16,4	18,8
18 h	4,4	5,5	6,2	7,2	8,5	9,9	10,8	12,0	13,7
24 h	3,5	4,4	5,0	5,7	6,8	7,9	8,7	9,6	11,0
48 h	2,0	2,6	2,9	3,4	4,0	4,7	5,1	5,6	6,4
72 h	1,5	1,9	2,1	2,5	2,9	3,4	3,7	4,1	4,7
4 d	1,2	1,5	1,7	2,0	2,3	2,7	3,0	3,3	3,8
5 d	1,0	1,3	1,4	1,7	2,0	2,3	2,5	2,8	3,2
6 d	0,9	1,1	1,3	1,4	1,7	2,0	2,2	2,4	2,8
7 d	0.8	1.0	1.1	1.3	1.5	1.8	1.9	2.1	2.5

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen D

Niederschlagsspende in [l/(s·ha)] rΝ

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Toleranzwerte der Niederschlagshöhen und -spenden nach KOSTRA-DWD 2020

: Spalte 188, Zeile 95 : Zehdenick (BB) INDEX RC Rasterfeld : 095188

Ortsname

Bemerkung

Dauerstufe D			Tole	eranzwerte UC	je Wiederkehrir	ntervall T [a] in [+%1		
Badorotalo B							•	50	100
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	10	11	11	12	13	14	15	15	16
10 min	12	14	15	16	17	18	19	19	20
15 min	14	16	17	18	20	21	21	22	22
20 min	15	17	18	20	21	22	22	23	24
30 min	16	18	20	21	22	23	24	24	25
45 min	16	19	20	21	23	24	24	25	26
60 min	16	19	20	21	23	24	24	25	26
90 min	16	19	20	21	22	23	24	25	25
2 h	15	18	19	21	22	23	24	24	25
3 h	15	17	19	20	21	22	23	23	24
4 h	14	17	18	19	21	22	22	23	23
6 h	13	16	17	18	19	21	21	22	22
9 h	12	15	16	17	18	20	20	21	21
12 h	12	14	15	16	18	19	19	20	21
18 h	11	13	14	16	17	18	18	19	20
24 h	11	13	14	15	16	17	18	18	19
48 h	11	12	13	14	15	16	16	17	17
72 h	11	12	13	13	14	15	16	16	17
4 d	11	12	12	13	14	15	15	16	16
5 d	11	12	12	13	14	15	15	15	16
6 d	12	12	12	13	14	14	15	15	16
7 d	12	12	13	13	14	14	15	15	16

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

UC Toleranzwert der Niederschlagshöhe und -spende in [±%]

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Berechnungsregenspenden für Dach- und Grundstücksflächen nach DIN 1986-100:2016-12

Rasterfeld : Spalte 188, Zeile 95 INDEX RC : 095188

: Zehdenick (BB) Ortsname

Bemerkung

Berechnungsregenspenden für Dachflächen

Maßgebende Regendauer 5 Minuten

 $r_{5,5} = 390,0 \text{ I/ (s · ha)}$ Bemessung Jahrhundertregen $r_{5,100} = 746,7 \text{ I/(s} \cdot \text{ha)}$

Berechnungsregenspenden für Grundstücksflächen

Maßgebende Regendauer 5 Minuten

Bemessung $r_{5,2} = 300,0 \text{ I/(s} \cdot \text{ha)}$ Überflutungsprüfung $r_{5,30} = 586,7 \text{ I/(s} \cdot \text{ha)}$

Maßgebende Regendauer 10 Minuten

 $r_{10,2} = 188,3 \text{ I/(s} \cdot \text{ha)}$ Bemessung Überflutungsprüfung $r_{10,30} = 370,0 \text{ I/(s} \cdot \text{ha)}$

Maßgebende Regendauer 15 Minuten

 $r_{15,2} = 141,1 \text{ I / (s \cdot ha)}$ Bemessung Überflutungsprüfung $r_{15,30} = 277,8 \text{ I/ (s} \cdot \text{ha)}$

Die ausgewiesenen Regenspenden basieren auf den nachfolgenden Grunddaten:

Wiederkehrintervall	Parameter		Dauerstufe	
wiederkennitervan	Parameter	5 min	10 min	15 min
2 a	rN [I / (s · ha)]	300,0	188,3	141,1
2 d	UC [±%]	11	14	16
F -	rN [l / (s · ha)]	390,0	-	-
5 a	UC [±%]	12	-	-
30 a	rN [I / (s · ha)]	586,7	370,0	277,8
30 a	UC [±%]	15	19	21
100 a	rN [l / (s · ha)]	746,7	-	-
100 a	UC [±%]	16	-	-

Legende

rΝ Niederschlagsspende in [l/(s·ha)]

UC Toleranz in [±%]

Berechnung der versiegelten Fläche zur Ermittlung der Regenrückhalteräume

Einzugsfläche	Flächene	eigenschaften		
	Art der Befestigung	Abfluss- beiwert	Fläche [m²]	Au [m²]
Dachfläche Aldi	Flachdach: Metall, Glas, Faserzement	0,90	1666,70	1500,03
Dachfläche REWE	Flachdach: Metall, Glas, Faserzement	0,90	3227,00	2904,30
Dachfläche Trafo	Flachdach: Metall, Glas, Faserzement	0,90	10,00	9,00
Anlieferungsrampe	Rampen: Neigung zum Gebäude	1,00	335,90	335,90
Fahrgassen	Verkehrsflächen: Betonsteinpflaster	0,70	2878,80	2015,16
Gehweg	Verkehrsflächen: Betonsteinpflaster	0,70	456,00	319,20
Stellplätze	Verkehrsflächen: Pflaster mit Fugenanteil > 15%	0,60	1779,00	1067,40
Schotterflächen	Kiesbelag: wassergebundene Flächen	0,70	135,30	94,71
EKW-Box	Verkehrsflächen: Betonsteinpflaster	0,70	16,00	11,20
Grünfläche	Rasen: flaches Gelände	0,10	961,90	96,19
Gesamt		0,73	11466,60	8353,09

BV: Außenanlagen REW-Markt und Aldi-Markt Falkenthaler Chaussee in Zehdenick

Flächenspezifizierung, Flächengruppe und Belastungskategorie

Fläche	Flächenspezifizierung	Flächen-	Belastungs-	$A_{b,a,i}$	Abfluss-	$A_{red,i}$	Flächenspezifischer Stoffabtrag
Nr.		gruppe	kategorie		beiwert		b _{R.a.AFS63}
				[m²]		[m²]	[kg/(ha·a)]
1	Verkehrsflächen (BP)	V3	III	3.214,70	0,9	2.893,23	760
2	Verkehrsflächen (RG)	V3	III	1.779,00	0,7	1.245,30	760
3	Stellflächen (BP)	V3	III	472,00	0,9	424,80	760
4	Stellflächen (SR)	V2	II	135,30	0,8	108,24	530
5	Dachflächen	D	I	4.903,70	1	4.903,70	280
6							
	•	•	Summe:	10.504,70		9.575,27	

Bilanzierung des Stoffabtrags B_{R,a,AFS63}

Kategorie	flächenspezifischer Stoffabtrag	S Ared,i	Flächenanteil	Stoffabtrag Kategorie
	b _{R.a.AFS63}			B _{R,a,i,AFS63}
	[kg/(ha·a)]	[m²]	[%]	[kg/a]
1	280	4903,70	51,2	137,3
II	530	108,24	1,1	5,7
III	760	4563,33	47,7	346,8

Summe des vorhandenen Gesamtstoffabtrag vorhandener flächenspezifischer Stoffabtrag

B_{R,a,AFS63} **489,9** kg/a

 $\mathbf{b}_{\mathsf{R,a,AFS63}}$ 511,6 kg/(ha·a)

> 280 kg/(ha·a)

Vorbehandlung erforderlich!

Erforderliche Reinigungsleistung

erforderlicher Wirkungsgrad der Vorbehandlungsanlage herf.

45,3%

Berechnung von Anlagen zur Versickerung von Niederschlagswasser gemäß Arbeitsblatt DWA-A 138

11.07.2022

Projektbezeichnung:

Außenanlagen REWE- Markt und Aldi-Markt Falkenthaler Chaussee in Zehdenick

Auftraggeber:

REWE Markt GmbH Zweigniederlassung Ost Rheinstraße 8 14513 Teltow

Aufgestellt:

cproject ingenieure gmbH Wilthener Straße 32 02625 Bautzen

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1555-1062

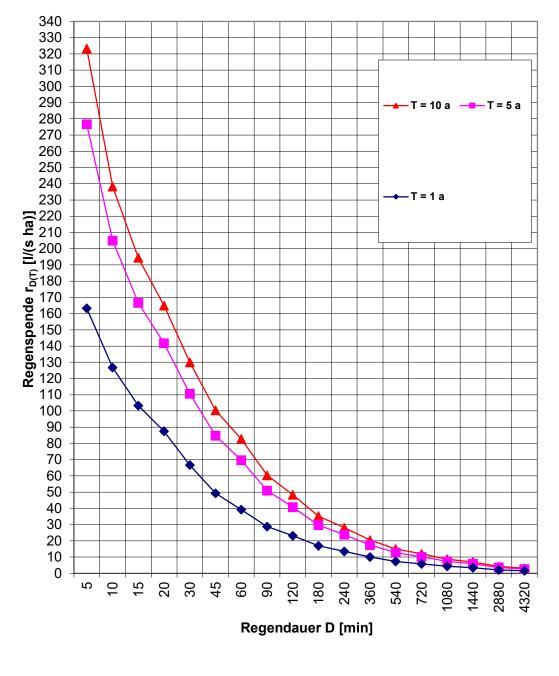
Örtliche Regendaten zur Bemessung nach Arbeitsblatt DWA-A 138

Datenherkunft / Niederschlagsstation	Zehdenick (BB)
Spalten-Nr. KOSTRA-DWD	62
Zeilen-Nr. KOSTRA-DWD	29
KOSTRA-Datenbasis	1951-2010
KOSTRA-Zeitspanne	Januar - Dezember

Regendauer D	Regenspende r _{D(T)} [l/(s ha)] für Wiederkehrzeiten				
in [min]	T in [a]				
[min]	1	5	10		
5	163,3	276,7	323,3		
10	126,7	205,0	238,3		
15	103,3	166,7	194,4		
20	87,5	141,7	165,0		
30	66,7	110,6	130,0		
45	49,3	84,8	100,4		
60	39,2	69,7	82,8		
90	28,7	50,9	60,4		
120	23,1	40,7	48,3		
180	16,9	29,7	35,2		
240	13,5	23,8	28,1		
360	10,0	17,4	20,5		
540	7,3	12,7	15,0		
720	5,8	10,1	12,0		
1080	4,3	7,4	8,7		
1440	3,4	5,9	7,0		
2880	2,0	3,5	4,2		
4320	1,5	2,6	3,1		

Bemerkungen:

Daten mit Klassenfaktor gemäß DWD-Vorgabe oder individuell


Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de

Lizenznummer: ATV-1555-1062

Örtliche Regendaten zur Bemessung nach Arbeitsblatt DWA-A 138

Datenherkunft / Niederschlagsstation	Zehdenick (BB)
Spalten-Nr. KOSTRA-DWD	62
Zeilen-Nr. KOSTRA-DWD	29
KOSTRA-Datenbasis	1951-2010
KOSTRA-Zeitspanne	Januar - Dezember

Regenspendenlinien

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de

Lizenznummer: ATV-1555-1062

Ermittlung der abflusswirksamen Flächen A_u nach Arbeitsblatt DWA-A 138

Flächentyp	Art der Befestigung mit empfohlenen mittleren Abflussbeiwerten Ψ _m	Teilfläche A _{E,i} [m ²]	Ψ _{m,i} gewählt	Teilfläche A _{u,i} [m²]
Schrägdach	Metall, Glas, Schiefer, Faserzement: 0,9 - 1,0	5.054	0,90	4.548
Schraguach	Ziegel, Dachpappe: 0,8 - 1,0			
Flachdach	Metall, Glas, Faserzement: 0,9 - 1,0			
(Neigung bis 3°	Dachpappe: 0,9			
oder ca. 5%)	Kies: 0,7			
Gründach (Neigung bis 15°	humusiert <10 cm Aufbau: 0,5			
oder ca. 25%)	humusiert >10 cm Aufbau: 0,3			
	Asphalt, fugenloser Beton: 0,9	290	1,00	290
	Pflaster mit dichten Fugen: 0,75	3.452	0,70	2.416
	fester Kiesbelag: 0,6			
Straßen, Wege und Plätze (flach)	Pflaster mit offenen Fugen: 0,5	1.830	0,60	1.098
()	lockerer Kiesbelag, Schotterrasen: 0,3	125	0,20	25
	Verbundsteine mit Fugen, Sickersteine: 0,25			
	Rasengittersteine: 0,15			
Böschungen,	toniger Boden: 0,5			
Bankette und	lehmiger Sandboden: 0,4			
Gräben	Kies- und Sandboden: 0,3			
Gärten, Wiesen	flaches Gelände: 0,0 - 0,1			
und Kulturland	steiles Gelände: 0,1 - 0,3			

Gesamtfläche Einzugsgebiet A _E [m²]	10.750
Summe undurchlässige Fläche A _u [m²]	8.377
resultierender mittlerer Abflussbeiwert Ψ_m [-]	0,78

Bemerkungen:

Befestigung:

Fahrstreifen / Gehweg - Betonpflaster

Stellflächen - Öko-Pflaster

Anlieferungsrampe - Beton

Stellflächen Traktoren - Schotterrasen

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1555-1062

Hinweise/ Erläuterungen zur Berechnung	
Drosselabfluß = 17 l/s Der geplante Drosselabfluß von 17 l/s in den vorhandenen RW-Kanal ent- spricht der Kapazität einer üblichen Anschlussleitung DN 150 mit 1% Gefälle.	

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1555-1062

Seite 1

Dimensionierung einer Rigole oder Rohr-Rigole nach Arbeitsblatt DWA-A 138

cproject ingenieure gmbH Wilthener Straße 32 02625 Bautzen

Auftraggeber:

REWE Markt GmbH Zweigniederlassung Ost Rheinstraße 8 14513 Teltow

Rigolenversickerung:

Kiesrigole mit Drosselabfluß

Eingabedaten:

 $L = [(A_u * 10 - 7 * r_{D(n)} - Q_{Dr}/1000) - V_{Sch}/(D*60*f_Z)] / ((b_R*h_R*s_{RR}) / (D*60*f_Z) + (b_R + h_R/2) * k_f/2)$

Einzugsgebietsfläche	A _E	m ²	10.750
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,78
undurchlässige Fläche	A_{u}	m ²	8.378
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	4,9E-08
Höhe der Rigole	h _R	m	1,0
Breite der Rigole	b_R	m	20
Speicherkoeffizient des Füllmaterials der Rigole	s _R	-	0,35
Außendurchmesser Rohr(e) in der Rigole	d_a	mm	
Innendurchmesser Rohr(e) in der Rigole	d _i	mm	
gewählte Anzahl der Rohre in der Rigole	а	-	
Gesamtspeicherkoeffizient	S _{RR}	-	0,35
mittlerer Drosselabfluss aus der Rigole	Q_{Dr}	l/s	17
Wasseraustrittsfläche des Dränagerohres	A _{Austritt}	cm ² /m	
gewählte Regenhäufigkeit	n	1/Jahr	0,2
Zuschlagsfaktor	f_Z	-	1,15
anrechenbares Schachtvolumen	V_{Sch}	m³	

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	60
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	82,8
erforderliche Rigolenlänge	L	m	31,0
gewählte Rigolenlänge	L _{gew}	m	36,0
vorhandenes Speichervolumen Rigole	V_R	m ³	252,0
versickerungswirksame Fläche	A _{S, Rigole}	m ²	738,0
maßgebender Wasserzufluss	Q_{zu}	l/s	
vorhandene Wasseraustrittsleistung	Q _{Austritt}	l/s	

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de

Lizenznummer: ATV-1555-1062

Dimensionierung einer Rigole oder Rohr-Rigole nach Arbeitsblatt DWA-A 138

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	323,3
10	238,3
15	194,4
20	165,0
30	130,0
45	100,4
60	82,8
90	60,4
120	48,3
180	35,2
240	28,1
360	20,5
540	15,0
720	12,0
1080	8,7
1440	7,0
2880	4,2
4320	3,1

Berechnung:

L [m]
12,51
18,00
21,57
23,90
27,18
29,76
30,96
29,80
27,74
22,14
15,46
0,62
0,00
0,00
0,00
0,00
0,00
0,00

Rigolenversickerung 31,0 Rigolenlänge L [m] Dauer des Bemessungsregens D [min]

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de

Lizenznummer: ATV-1555-1062

Bewertungsverfahren nach Merkblatt DWA-M 153

cproject ingenieure gmbH Wilthener Straße 32, 02625 Bautzen

Gewässer	Тур	Gewässer-
(Tabellen 1a und 1b)	ТУР	punkte G
Grundwasser außerhalb von Trinkwassereinzugsgebieten	G12	10

Fläche	Flächenanteil		Flächen F _i / Luft L _i		Abfluss- belastung B _i	
Belastung aus der Fläche / Herkunftsfläche gem. Tabelle A.3	(Abschnit	t 4)	(Tab. A.3 / A.2)		belastarig Bi	
Einfluss aus der Luft gem. Tabelle A.2	A _{u,i} [m²] o. [ha]	f _i	Тур	Punkte	$B_i = f_i^* (L_i + F_i)$	
Dachflächen von Wohn- und vergleichbaren Gewerbegebieten	4548	0,543	F2	8	8,688 I	
Einflussbereiche von Gewerbe und Industrie mit Staubemission durch Produktion etc.	4546	0,543	L4	8		
Pkw-Parkplätze mit häufigem Fahrzeugwechsel z.B. Einkaufszentren	2520	0.422	F6	35	18,146	
Einflussbereiche von Gewerbe und Industrie mit Staubemission durch Produktion etc.	3539	0,422	L4	8		
Hofflächen in Misch-, Gewerbe- und Industriegebieten	290	200 0.0	290 0,035	F5	27	1,225
Einflussbereiche von Gewerbe und Industrie mit Staubemission durch Produktion etc.		0,035	L4	8	1,225	
	∑ = 8377	∑ = 1			B = 28,06	

Die Abflussbelastung B = 28,059 ist größer als G = 10. Eine Regenwasserbehandlung ist erforderlich!

Bewertungsverfahren nach Merkblatt DWA-M 153

Wilthener Straße 32, 02625 Bautzen			
	maximal zulässiger Durchgangswert	$D_{max} = G / B$:	G / B = 10/28,06 = 0,36
	gewählte Versickerungsfläche A _S =	990	Au : As = 8,5 : 1

vorgesehene Behandlungsmaßnahme (Tabellen 4a, 4b und 4c)	Тур	Durchgangswert D _i
Versickerung durch 20 cm bewachsenen Oberboden (5 : 1 < Au : As ≤ 15 : 1)	D2	0,35
Divisib was served D - Deadyld alley D (Ab	:# C O O).	
Durchgangswert D = Produkt aller D _i (Abschnitt 6.2.2)		,
Emissionswert E = B * D:		E = 28,06 * 0,35 = 9,82

Die vorgesehene Behandlung ist ausreichend, da E ≤ G (E = 9,82; G = 10).

Bemerkungen:

cproject ingenieure gmbH

Versickerungsfläche = Grüninseln im Parkplatz = 990 m²